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Motivation - Push and Internet scalability
Case study: Android’s push service
Our solution: Content-based optimization

Conclusions and future Work
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Information Delivery on the Web
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e Recipient’s server receives message almost instantaneously...

e ...but short polling leads to delayed delivery



Pulling for Messages: Short Polling
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Alternative to Short Polling - Push Message Delivery
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Near-zero delay in message delivery
Continuous (TCP) connection =1
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Effects of Long-lived Connections on Web Infrastructure
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3 HTTP(S) web server
Mobile client (content generator #1)
Internet/
Firewall HTTP proxy Core

E.g. only TCP traffic on  e.g. content policing Push server
ports 80 (HTTP) &
: 443 (HTTPS) permitted

Email server
(content generator #2)
PC Client
User’s network provider Service provider network
e.g. corporate network (e.g. Google)

Tied up network resources (e.g. proxy memory/processing)
End-point scalability limitations (client battery/processing, server
capacity)
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Android’s Cloud-to-Device Messaging Service
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Figure: Time-line of a long polling interaction between client and server.

Always-on connection via long polling

18



Android: Longevity & Packets per Connection

(a) Duration of a TCP connection
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Figure: Durations & packet counts of TCP connection between Android
client and C2DM server

Recurring durations & packet counts imply algorithmic control
(not random disconnects)



Android: Concurrent TCP Connections

Android Client ——— Google: Simultaneously open ports (24H period)
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Figure: Concurrent TCP connections - Android client & push server

Scalability concerns
Multiple concurrent TCP connections per client, 24 x 7
Uses HTTPS for security and transparent proxying
(further burden on endpoints)



Our ldea: Content-based Optimization

Turn-off always-on connections when message arrivals are rare.
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Question: Learning when to flick the switch
Answer. Message arrival patterns (over time)
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Enron Email Data-set

Publicly released by the US Federal Energy Regulatory
Commission

Contains 500,000 email messages of 150 senior Enron
employees over 4 years

Email headers also available (e.g. email sending times)

Convenient database representation of data-set available via

A.Fiore and J.Heer, UC Berkeley, Enron Email Analysis http://bailando.sims.berkeley.edu/enron email.html
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Example: Day of week Email Message Arrivals

Relative frequency of email reception
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Figure: A user's weekly email reception (averaged over 110 weeks).

Rare messages arrivals during several hours of a week
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Message inter-arrival times

(a) Mean iit =2.36, Std. iit =8.09, Total msgs =2131
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(b) Mean iit =65.87, Std. iit =136.29, Total msgs =281
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Figure: Relative frequency of inter-arrival times (iits) in hours for (a) the

fastest user and for (b) the slowest user.

Non-Poisson message arrivals
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When to Flick the Switch - Simple Machine Learning (ML)

Fixed Learning For each user, use a small fraction of arrival-times
to rank hours of the week according to the relative frequency of
email arrival.

Adaptive Learning Use all previous arrival-times, weigh more
recent arrival-times more.

F;+1 = aF; + (1 — Oé)f, (1)

F; - 168-element vector of hour rank vector of week /
f; - 168-element vector of message arrival frequencies for week i
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Fraction of real-time email delivery
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Figure: Fastest user, « = 0.9 for adaptive learning

Both learning algorithms perform reasonably well



Performance - Averaged Across 150 Users

Averaged across 150 users, with errorbars
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Figure: 150 users, o = 0.9 for adaptive learning

Adaptive learning more effective for slower users



Future Work

Quantitative study of scalability bottlenecks - client battery,
network elements, server resources

Other content information for ML: e.g. semantic meaning,
importance of message, sender, spam score, size, attachments,
etc.

Applicability to other pushed information e.g. social network
updates

Sophisticated ML algorithms
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Conclusion

Push messaging on the web is not free
Content-based optimization may hold the key

Proposed approach yielded 50% on-time reduction with 90%
messages delivered instantaneously

Multiple future directions possible here - more measurements,
ML, other message types, etc.

High impact research problem - explosion of mobile devices
and HTTP (port 80) based communication
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