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Outline

• Motivation - Push and Internet scalability

• Case study: Android’s push service

• Our solution: Content-based optimization

• Conclusions and future Work
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Information Delivery on the Web
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• Recipient’s server receives message almost instantaneously...

• ...but short polling leads to delayed delivery
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Pulling for Messages: Short Polling
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Alternative to Short Polling - Push Message Delivery
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Effects of Long-lived Connections on Web Infrastructure
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Android’s Cloud-to-Device Messaging Service
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Figure: Time-line of a long polling interaction between client and server.

Always-on connection via long polling
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Android: Longevity & Packets per Connection
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Figure: Durations & packet counts of TCP connection between Android
client and C2DM server

Recurring durations & packet counts imply algorithmic control
(not random disconnects)
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Android: Concurrent TCP Connections
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Android Client −−− Google: Simultaneously open ports (24H period)

Figure: Concurrent TCP connections - Android client & push server

Scalability concerns
Multiple concurrent TCP connections per client, 24× 7

Uses HTTPS for security and transparent proxying
(further burden on endpoints)
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Our Idea: Content-based Optimization

Turn-off always-on connections when message arrivals are rare.

Question: Learning when to flick the switch
Answer: Message arrival patterns (over time)
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Enron Email Data-set

• Publicly released by the US Federal Energy Regulatory
Commission

• Contains 5̃00,000 email messages of 150 senior Enron
employees over 4̃ years

• Email headers also available (e.g. email sending times)

• Convenient database representation of data-set available via
A.Fiore and J.Heer, UC Berkeley, Enron Email Analysis http://bailando.sims.berkeley.edu/enron email.html
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Example: Day of week Email Message Arrivals
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Figure: A user’s weekly email reception (averaged over 110 weeks).

Rare messages arrivals during several hours of a week
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Message inter-arrival times
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(a) Mean iit =2.36, Std. iit =8.09, Total msgs =2131

 

 
Fastest User (lowest average iits)
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(b) Mean iit =65.87, Std. iit =136.29, Total msgs =281

 

 
Slowest User (highest average iits)

Figure: Relative frequency of inter-arrival times (iits) in hours for (a) the
fastest user and for (b) the slowest user.

Non-Poisson message arrivals
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When to Flick the Switch - Simple Machine Learning (ML)

Fixed Learning For each user, use a small fraction of arrival-times
to rank hours of the week according to the relative frequency of
email arrival.
Adaptive Learning Use all previous arrival-times, weigh more
recent arrival-times more.

Fi+1 = αFi + (1− α)fi (1)

Fi - 168-element vector of hour rank vector of week i

fi - 168-element vector of message arrival frequencies for week i
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Performance - Fastest User
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Figure: Fastest user, α = 0.9 for adaptive learning

Both learning algorithms perform reasonably well
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Performance - Averaged Across 150 Users
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Figure: 150 users, α = 0.9 for adaptive learning

Adaptive learning more effective for slower users

16 / 18



Future Work

• Quantitative study of scalability bottlenecks - client battery,
network elements, server resources

• Other content information for ML: e.g. semantic meaning,
importance of message, sender, spam score, size, attachments,
etc.

• Applicability to other pushed information e.g. social network
updates

• Sophisticated ML algorithms
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Conclusion

• Push messaging on the web is not free

• Content-based optimization may hold the key

• Proposed approach yielded 50% on-time reduction with 90%
messages delivered instantaneously

• Multiple future directions possible here - more measurements,
ML, other message types, etc.

• High impact research problem - explosion of mobile devices
and HTTP (port 80) based communication
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